If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=50-4.9x^2
We move all terms to the left:
0-(50-4.9x^2)=0
We add all the numbers together, and all the variables
-(50-4.9x^2)=0
We get rid of parentheses
4.9x^2-50=0
a = 4.9; b = 0; c = -50;
Δ = b2-4ac
Δ = 02-4·4.9·(-50)
Δ = 980
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{980}=\sqrt{4*245}=\sqrt{4}*\sqrt{245}=2\sqrt{245}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{245}}{2*4.9}=\frac{0-2\sqrt{245}}{9.8} =-\frac{2\sqrt{245}}{9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{245}}{2*4.9}=\frac{0+2\sqrt{245}}{9.8} =\frac{2\sqrt{245}}{9.8} $
| 112+4y=180 | | 23=8-5v | | 1=c–2 | | 6x=5=3x+14 | | 2y-12=-30 | | 12=1/5r=2r+1 | | 2(x+4)=7(x-1) | | 6y+2-8y=4 | | (x-2)^3=8 | | -3=c+6 | | 12-(1/5r=2r+1 | | 2x-4÷5=4 | | 75=4.9x^2 | | -12k-2k=-2k-13k-3 | | 15x-(13x+14)-5x=0 | | 13y-11=7y+25 | | 23=5-8v | | 28A+22.75a=50B+17.25B | | 455.00=0.25m+230.00 | | 3y-4=12y7 | | 75+-4.9x2=0 | | 455.00=230.00+0.25m | | 9−t^2=0 | | 4x+11=110 | | 5(2x-3)+x-4=-2(3x+4)-10x+3 | | 2p/3=18 | | (-32/2500)x^2+x+220=100 | | 3(x-2)=x+2x | | m/9+2/3=21/3 | | 2y+3y=-4 | | 3(z-2)-z=4z-20 | | x2+10x+13=-3 |